SYNTHESIS AND CHEMISTRY OF HC(SO,F), AND CIS- AND TRANS(HO) TEF

```
K. SEPPELT, G. KLOTER, B. POTTER, D. LENTZ AND H. PRITZKOW
Institut für Anorganische und Analytische Chemie,
Freie Universität, Fabeckstrasse 34/36, 1 Berlin 33
```

 $HC(SO_2F)_3$ has been prepared and characterized. It turned out to be a strong acid, comparable to mineral acids. In aqueous solution the salts of the type $C_s^+C(SO_2F)_3^-$ are formed. The anion, as found by crystal structure analysis contains planar CS_3 configuration.

Quite in contrast to these findings $HC(OSO_2F)_3$ is not even soluble in water.

Derivatives of HC(SO₂F)₃ have been prepared so far

$CH_3 - C(SO_2F)_3$	$F-C(SO_2F)_3$
$CIC(SO_2F)_3$	$Br-C(SO_2F)_3$
J-C(SO ₂ F) ₃	

The heavier halogen derivatives (Cl, Br, J) are oxidizing agents ('positive halogen').

A mixture of <u>cis-</u> and <u>trans-</u> $(HO)_2 TeF_4$ is obtained if $HOTeF_5$ and $Te(OH)_6$ are melted together. The mixture of the isomeres have been transfered into the corresponding silylesters <u>cis-</u> and <u>trans-</u> $(R_3SiO)_2 TeF_4$, which could be separated by fractional crystallisation and distillation.

Without conformational change the pure silvlesters have been reacted back to pure <u>cis</u>- $(HO)_2TeF_4$ and <u>trans</u> - $(HO)_2TeF_4$ by means of anhydrous HF. Both <u>cis</u>- and <u>trans</u> $(HO)_2TeF_4$ have been reacted with CIF to give <u>cis</u>- and <u>trans</u>- $(CIO)_2TeF_4$, yellow liquids. The latter react with elemental bromine to the rather unstable <u>cis</u>- and <u>trans</u>- $(BrO)TeF_4$, red liquids.

Starting with cis-(HO)₂TeF₄ and XeF₂ a polimer Xenon compound of the formula $\left(-Xe - O - TeF_{4}\right)$

$$\begin{pmatrix} & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & &$$

All materials have been characterized by melting point and vapour pressure, 19 F - nmv spectroscopy, vibrational spectroscopy, and elemental analysis.